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We present an algorithm for generating random networks with arbitrary degree distribution and clustering
(frequency of triadic closure). We use this algorithm to generate networks with exponential, power law, and
Poisson degree distributions with variable levels of clustering. Such networks may be used as models of social
networks and as a testable null hypothesis about network structure. Finally, we explore the effects of clustering
on the point of the phase transition where a giant component forms in a random network, and on the size of the
giant component. Some analysis of these effects is presented.
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I. INTRODUCTION

Many random network models have been proposed to rep-
licate important aspects of the topology of real-world net-
works [1–14]. In particular, much attention has been paid to
the degree distribution and the clustering coefficient. A great
deal of progress has been made on network models which
combine certain degree distributions with some level of clus-
tering [13,15–19]. It has been an open problem to combine
these two topologies in the most general way. Is it possible to
have a network model which is flexible enough to accommo-
date any combination of degree distribution and clustering?
In this paper we propose such a model and demonstrate its
effectiveness by generating networks over a wide range of
parameters.

Random network models have fallen into several broad
categories. Some models have focused on Monte Carlo tech-
niques to reproduce a specific topology[1,2,20]. Other mod-
els have specific topologies built into them(e.g., regular lat-
tices) in order to explicate the so-called “small-world”
problem [8,9]. Yet other models have focused on plausible
mechanisms for how networks form, such as a growth pro-
cess with preferential attachment[10,11,15]. In common
with most mechanism-based models, we produce our net-
works by growing them from one initial node. We find that
being able to construct a network one node at a time also
offers sufficient flexibility to combine arbitrary degree distri-
butions and clustering.

Once we have a network model that can combine arbi-
trary degree distributions and clustering, it is of interest to
explore the effects of these parameters on the size of the
giant component and the point of the phase transition where
a giant component forms. This is true with regard to cluster-
ing in particular, as so far models capable of interpolating
between extremes of this parameter have been lacking. In
Sec. III we explore the effects of clustering on the size of the
giant component and point of the phase transition. In Sec. IV
we present some analysis.

Throughout this article we will rely on the following defi-
nitions. Thedegree distributionof a network describes how

many neighbors a node in a network has. The probability of
a node having degreek in a network is described by the
degree distributionpk, where pk can take the form of any
well defined discrete density function over the positive inte-
gers. Examples frequently employed in the literature are the
following.

Poisson distribution:pk=zke−z/k!, kù0.
Power-law distribution. For our experiments, we use

power laws with finite cuttoffsk: pk=k−ge−k/k /Ligse−1/kd, k
ù1, where Linsxd is thenth polylogarithm ofx.

Exponential distribution:pk=s1−e−1/lde−k/l, kù0.
Empirical distribution: The degree distribution is esti-

mated from a network sample.
Gaussian distribution: The ordinary Gaussian must be

modified to be positive and discrete.
The clustering coefficient Cdescribes the proportion of

triads in a network out of the total number of possible triads.
The clustering coefficient is defined as

C =
3ND

N3

whereND is the number of triads in the network andN3 is the
number of connected triples of nodes. Note that in every
triad there are three connected triples.

There is also a measure oflocal clusteringgiven by

Ci =
NDsid

Sdsid
2

D
whereNDskd is the number of triads connected to nodei, dsid

is the degree of nodei, ands dsid
2

d is the number of potential
triads connected to a node of degreedsid. The average value
of local clustering(i.e., “Watts-Strogatz Clustering”[8]) is
also of interest:

o Ci

N

whereN is the number of nodes in the network. This value is
frequently close to the clustering coefficient, and will be
equal to the clustering coefficient if local clustering is con-
stant throughout the network.*Electronic address: emv7@cornell.edu
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II. RANDOM NETWORK MODEL

Introducing clustering into a network with a specified de-
gree distribution is a nontrivial problem. Any method aspir-
ing to introduce an arbitrary amount of clustering into a net-
work must interpolate between two extremely different
topologies. When clustering is 0%, the method must repro-
duce pure random networks with specified degree distribu-
tions. When clustering is 100%, there is only one configura-
tion a network may have: each node must be connected to a
small clique where every node has the same degree, and all
of a node’s neighbors are connected with one another. This
challenge is made all the more difficult by trying to make the
model networks general enough to accommodate any desired
degree distribution.

The most obvious way of introducing triads is to simply
define arewiring rule whereby links are swapped between
nodes so as to introduce triads while leaving the degree dis-
tribution the same. Such rewiring schemes quickly run into
problems, as it is impossible to define a rule such that the
number of triads is strictly increasing and the number of
triads introduced does not max out. The problem is that when
links are “swapped” among nodes, triads are not only created
but can be destroyed. For example, in our simulations we
have found that such schemes are effective only for introduc-
ing about 15% clustering into a poisson random network.

Rewiring algorithms have proven effective at the related
challenge of adjusting theaverage local clustering. Kim [12]
has recently used rewiring algorithms to introduce large
amounts of local clustering into networks. Using Monte
Carlo (MC) simulations at zero temperature(i.e., a triad is
never destroyed in the rewiring process) and a Hamiltonian
of o−Ck, Kim was able to modify various networks with
diverse degree distributions to exhibit average local cluster-
ing soCk/Nd ranging from 0% to 70%.

Newman[22] and Guillaumeet al. [19] have had some
success with another approach. These authors define a bipar-

tite network of individuals and affiliations. Then they project
the bipartite network onto a unipartite network of only nodes
and no affiliations by connecting two nodes if they share a
common affiliation. The distribution of affiliation size and
the affiliation-degree distribution of the nodes are chosen in
such a way as to produce a desired level of clustering. Tun-
ing the degree distribution simultaneously has proven more
challenging, however. While the bipartite projection method
may actually have the potential to generate pure random net-
works with tunable degree distributions and clustering, so far
its efficacy has been shown only for exponential and power-
law random networks. It remains an open problem to imple-
ment it for arbitrary degree distributions.

Our method works by growing networks. The algorithm
first initializes all nodes with a degree drawn independently
from the desired degree distribution. Then the random net-
work is constructed by an iterative procedure similar to a
branching process. The premise is to start from a single node
and then assign new connections entirely at random under
the constraint that a certain amount of clustering must exist.
The algorithm is described in detail in Table I, and is sche-
matized in Fig. 1. Two example networks are shown in Fig.
2.

Our model has similarities to and differences from other
models proposed in the literature. Like the algorithm of Milo
et al. [20], each node is assigned a unique degree prior to any
edges being formed between nodes. But like the model net-
works of Barabasi[3] and Dorogovtsevet al. [21] among
others, the network is constructed via a growth process. The
first node is chosen at random, and subsequently nodes are
added to the graph by attaching them to nodes which still
have stubs that have not been matched. When the new node
forms its own connections, it first forms a list of all nodes
which are two steps away. Then with probabilityCinput, that
node is selected as the next neighbor.

One complicated feature of this algorithm concerns the
probability of selecting a new neighbor from the stub list. In

TABLE I. Detailed description of the clustering method.

(1) Initialize all nodes with a degree drawn independently from the degree distribution.

(2) Form a list of “stubs”—connections of nodes which have not yet been matched with neighbors. Call this list StubList.

(3) Pick a starting nodev0 uniformly at random from all nodes.

(4) For each ofv0’s stubs, choose a new neighbor by picking an elementv1 from the StubList with probabilitypv1udsv0d as described in
the text. If the new neighbor is not the same node asv0 or already connected tov0 then form the connection. Otherwise, repeat the
process until a valid neighbor is found. Add all of the new neighbors from this process to a list called NextWave.

(5) Copy all elements of NextWave to a list called CurrentWave. Remove all elements from NextWave. For all elements in CurrentWave
do the following.

(a) Form a list of all nodes two steps away. If a node does not have any stubs left in StubList, throw it out. Call this list
PotentialTriads.

(b) For all stubs which have not been assigned neighbors:(i) Scan through PotentialTriads. With probabilityCinput, connect to node
v3PStubList. Remove elementv3 from PotentialTriads regardless of whether it was selected. If it was selected, also remove an instance
of v3 from the StubList.(ii ) If no neighbors were selected from PotentialTriads, select a new neighbor by choosing from StubList as
above. If the new neighbor is not in CurrentWave, and if the new neighbor is not already in NextWave, add them to NextWave.

(6) Repeat the last step until NextWave is empty following an iteration. Then, if StubList is empty, the process is complete—all
connections have been formed. Otherwise, start a new component by choosing a new starting node uniformly at random from those not
yet in the network.
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fact, new neighbors cannot be selected uniformly at random
from the stub list, as clustering implies a certain amount of
degree assortativity among the nodes in the network. For
example, a node connected to a degreek node hask−1 po-
tential triads in common with that node, and on average will
haveCsk−1d common triads. This implies that the node must
have on average a degree at least equal toCsk−1d.

Because triads are distributed uniformly throughout the
network, the number of triads connected to a node of degree
k is distributed binomial(s k

2
d ,C). As noted above the number

of common triads with a neighbor of degreek is distributed
binomial sk−1,Cd. Let ti j denote the number of triads nodei
has in common with nodej , and t ji denote the number of
triads j has in common withi. Of course these two random
variables should be equal. We can calculate the probability of
these two potential neighbors as having an equal number of
common triads as:

pij
c = o

x=0

minfdsid,ds jdg

psti j = xdpst ji = xd.

Let qj denote the probability of selecting nodej from the
stub list. Then the correct probability for selecting nodej as
a neighbor is

FIG. 1. Overview of the network construction process. The first
node(far left) is chosen at random. Then neighbors for that node are
chosen as described in the text. Subsequently, neighbors are chosen
for the new nodes, but now we have new connections formed with
nodes two steps away with probabilityCinput. Triadic connections
are indicated with dotted lines. This process continues until the
waves die out, and a new component is formed, or all nodes are
exhausted.

FIG. 2. Two examples of networks generated with the algorithm. Left: Random network with power-law degree distribution,k=15, g
=2, C=0.15. Right: Random network with Poisson degree distribution,z=4, C=0.40 [38]. Note that these are abstract representations of
random networks. The spatial embedding of the network does not have any meaning.
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qij =
qjpij

c

oa
pia

c

which is justqj weighted by the probability of the two neigh-
bors having a compatible number of triads in common.

In order to sample from this distribution, we use Markov
chain Monte Carlo techniques. For a large number of itera-
tions we select a new nodeb from the stub list, then with
probability aab we accept this new neighbor, wherea is the
currently selected node in the Markov process, and

aij =
pim

c

pia
c .

If b is not accepted, we keepa for the next iteration. The
final neighbor is the node selected at the last iteration.

It is desirable that our algorithm selects networks as uni-
formly as possible from the ensemble of all networks which
realize a given degree distribution and clustering coefficient.
It is difficult to prove that our algorithm is truly unbiased in
this sense, though our networks do have many of the prop-
erties of an unbiased random network. The algorithm can be
tuned to produce exactly the right proportion of triads to
triples in the limit of large graph size. Furthermore, the de-
gree of the nodes were chosen as independently random vari-
ables, so in the limit of large graph size, the degree distribu-
tion is unbiased too. Furthermore, the triads are uniformly
distributed throughout the network as reflected by the fact
that the local clustering is independent of degree. Lastly,
when this algorithm is used to produce networks with no
clustering at all, it produces networks with the same statisti-
cal properties as true random graphs with a specified degree
distribution. As shown in Fig. 3, the distribution of compo-

nent sizes for networks made with this algorithm is identical
to true random graphs with specified degree distribution
without clustering.

It is worth noting that many real-world networks, particu-
larly in the biological realm, have local clustering which
scales as 1/k [23]. Our model in contrast produces constant
local clustering, though it may be possible to generalize our
method to create networks with any desired schedule of local
clustering.

III. RESULTS

We have explored the effects of clustering and degree
distribution over a wide range of parameters. Figures 2
(right), 4 and 5 illustrate the effect of clustering on the struc-
ture of a random networks with Poisson degree distributions
sz=3d as clustering is increased from 0 to 1.00. AsC is
increased, nodes tend to disaggregate into smaller tightly
connected clusters of nodes with similar degree. This has the
overall effect of decreasing the giant component size as clus-
tering is increased. In the limit as C goes to 1, we find that
the network breaks down into many small completely con-
nected cliques with each node in a clique sharing a common
degree.

Figure 6 shows the effects of clustering on the size of the
giant component for a Poisson random network. Clustering
varies from 0.05 to 0.90. The giant component seems to un-
dergo a phase transition at a critical level of clustering
around C=0.60. In the next section we will find that the

FIG. 3. Random graphs were generated with an exponential de-
gree distributionsl=1.5d with two algorithms:(1) the clustering
algorithm described in this text withC=0; (2) a “stub-matching”
algorithm as in[2], known to produce true random graphs with
specified degree distributions. The frequency of component sizes is
illustrated above.

FIG. 4. Random network on 1500 nodes, Poisson degree distri-
bution sz=4d, C=0.00. Compare with Figs. 2(right) and 5.
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critical clustering value is actuallyC* =0.618. At this point,
nodes suddenly disaggregate into much smaller, tightly inter-
connected groups. Similar phase transitions have been ob-
served throughout the network literature, particularly con-
cerning the targeted deletion of links and nodes in
percolation phenomena[24]. This algorithm has similar dis-
connecting results without modifying the degree distribution
of the network.

Regarding power-law networks(see Fig. 7), we note the
striking tendency for moderate levels of clustering to limit
the size of the giant component. Because the number of po-
tential triads connected to a node scales ask2, the high-
degree vertices account for most of the clustering. In net-
works with highly skewed degree distributions, the high-
degree nodes must connect to one another in order to realize
the required number of triads. This has the effect of limiting
the ability to act as hubs for low-degree vertices, and conse-
quently the network disconnects into many small compo-
nents. Large components can be preserved under much
higher clustering with distributions such as the Poisson.

The phase transition also undergoes major changes with
the introduction of clustering, although this effect seems to
depend sensitively on the degree distribution. In Fig. 8 we
see that the phase transition where a giant component forms
is not significantly affected by the introduction of clustering
for networks with power-law degree distributions. In contrast
to the Poisson random networks, there is no sharp phase
transition between the regime with a giant component and
that without. This bears some resemblance to percolation
phenomena, where the phase transition disappears for true
power laws and an exponent of 2. But in Fig. 9 we see that
the point of the phase transition was dramatically shifted
forward for the Poisson random network. It is somewhat sur-
prising to observe the phase transition being shiftedforward
as our algorithm features the introduction of degree assorta-
tivity into the network. Previous research has shown the ten-

FIG. 5. Random network on 1500 nodes, Poisson degree distri-
bution sz=4d, C=0.97.

FIG. 6. Size of the giant component versus the clustering coef-
ficient in a Poisson random network,z=3. Each point represents the
average of 40 trials.

FIG. 7. N=5000 nodes. Power-law with parametersk=10 and
g=2. Each point represents the average of 40 trials. Compare this
with Fig. 6. The phase transition is much less sharp than for the
Poisson random networks.

FIG. 8. Two random networks are compared over a range of
parameter values for the power-law degree distribution with param-
etersk andg=2. Each point represents the average of 40 trials.
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dency of degree assortativityto shift the point of the phase
transition backward[25].

IV. PHASE TRANSITIONS

It is a necessary condition for a giant component to exist
that if we pick a node at random, the average number of
neighbors two steps away,s2, exceeds the number of neigh-
bors one step away,s1 [26]. This is intuitive, since if it were
not the case, the number of neighborsn steps away would
decrease to zero on average, and the component would be
finite in the limit of large network size. We can use this to
approximate the point of the phase transition as clustering is
varied in our random networks. Formally, we will solve for
the point where

s1 = s2. s1d

The necessary condition(1) will not quite be a sufficient
condition in the presence of clustering as described below.
Thus, our solution will only be a lower bound on the point of
the phase transition, but in practice, this will serve as an
excellent approximation.

For the Poisson degree distribution, the average number
of nodes one step away is equal to the parameter of the
distribution z, so we haves1=z. As is well known[1], the
number of edges emanating from a node if we pick an edge
at random and follow it to one of its ends is alsoz for the
Poisson degree distribution. Thus, in the absence of cluster-
ing we would have simplys2=s1z=z2, wheres2 is the aver-
age number of nodes two steps away from a randomly cho-
sen node.

In the presence of clustering, things become more com-
plicated. Let us pick a node uniformly at random in the net-
work and call this nodev0. A neighbor of this node,v1, will
have on averagez connections not in common withv0. Fur-
thermore, there will be on averageCz triadic connections
betweenv0 andv1 as each of those connections has a prob-
ability C of being a triad. We can simply deduct the triadic
connections froms2, so that we have

s2 . z2 − Cz2 = z2s1 − Cd. s2d

There is not equality in Eq.(2) because there is an additional
force limiting the number of second neighbors: Once two
neighbors ofv0, sayv1 andv18, share a triadic connection, it
becomes more likely that a node two steps away fromv0, say
v2, is a common neighbor of bothv1 and v18. In fact, such
connections exist with probabilityC. Then, the number of
connections we should deduct from every neighbor at dis-
tance 2 due to common connections of nodes at distance 1 is
equal toC times the average number of triadic connections at
distance 1, or in other wordsz2C2. Thus, we have

s2 = z2 − Cz2 − C2z2 = z2s1 − C − C2d.

We can use this to solve for the criticalzC
* where a giant

component forms given a level of clusteringC:

z= z2s1 − C − C2d. s3d

The nonzero root of this equation is given by

zC
* =

1

1 − C − C2 . s4d

Note that whenC=0 we retrieve the well known result that a
giant component forms whenz=1 in the absence of cluster-
ing. Unfortunately, we can only say that this is a lower bound
for the phase transition because the nodes at distance 2 are
not identical tov0. The number of outgoing connections from
such nodes(to nodes not already counted) is less thanz
−C2z on average.

In Fig. 9 we have plotted the size of the giant component
versus the parameterz for several levels of clustering. The
vertical lines correspond to the phase transitionszC

* as given
by (4). We find good agreement between theory and simula-
tion.

There is a singularity in(4) where 1−C−C2=0. At this
point, C* =0.618, the giant component disappears regardless
of the average degreez of the degree distribution.C* repre-
sents the critical level of clustering that can coexist in a
network with a giant component.

V. FINITE SIZE EFFECTS

During the execution of the algorithm, it occasionally
happens that a node cannot find a suitable neighbor due to
the absence of a node left in the network which has free stubs
and the correct degree to satisfy the degree assortativity re-
quirements. This imperfection is due to the finite size of the
network. In the limit of large size, it would always be pos-
sible to find a scale such that every node can find just the
right profile of neighbors with the right degree. There is no
perfect way to deal with such discprepancies. For the simu-
lations used in this article, we have simply truncated the
degree of that node so that it does not have to seek a new
neighbor. Even with networks of only 5000 nodes, the num-
ber of corrections made is quite small.

Figures 10 and 11 show the effects of network size and
clustering on the amount of degree corrections made by the
algorithm. Figure 10 shows the effects of clustering on the

FIG. 9. The size of the giant component is shown vsz, the
parameter of the Poisson degree distribution, for four levels of clus-
tering (C=0.0, C=0.15,C=0.30,C=0.40). The vertical lines indi-
cate the point of the phase transition for each level of clustering
predicted by Eq.(4).
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number of corrections made for two networks. Note that the
total number of “stubs” in the network is equal to the average
degree of the nodes times the population size. The correc-
tions made is shown as the proportional reduction in the
number of “stubs.” Even at 90% clustering, the Poisson ran-
dom network only undergoes less than 5% reduction in its
“stubs.”

Figure 11 shows the effects of network size on the number
of corrections made. As expected, the number of corrections
drops with the number of nodes in the network. For 7000
nodes and 80% clustering, a Poisson random network under-
goes less than a 0.5% reduction in its “stubs.”

VI. DISCUSSION

We have presented a method for generating random net-
works which unite two frequently modeled topological
features—clustering and the degree distribution.

Random network models can serve several important pur-
poses. First, they can serve as a null hypothesis about the
structure of a real-world network. Significant deviations in
the structure of the real-world network from a corresponding
random graph indicate that there are more forces at work

shaping the network than are being accounted for in the ran-
dom graph model. These deviations can then motivate fur-
ther inquiry into the forces shaping real-world networks[1].

Second, real-world networks are very often of a scale that
it is impossible to map them entirely. Various network sam-
pling techniques have been devised to estimate features of
the network topology in the absence of data on the entire
network[27–29]. Given reliable estimates about network to-
pology, a random network can then be generated which re-
produces this topology. The random network may be used as
a stand-in for modeling various dynamic models on net-
works.

Last, the family of random networks we have presented
here enables the exploration of a huge parameter space for
models on networks. There are a growing number of models
which describe dynamic processes on networks. Examples
are models of diffusion processes, such as models of epidem-
ics [30–32], models of fads[33,34], the spread of rumors
[35,36], and the migration of species among connected habi-
tats [37]. Other models explore interactions among nodes
embedded in a network. Examples include spin glasses,
Kuramoto oscillators, and disordered neural networks[12].
There are many applications for exploring the effects of clus-
tering and degree distributions on these and other models.
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