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Random networks with tunable degree distribution and clustering
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We present an algorithm for generating random networks with arbitrary degree distribution and clustering
(frequency of triadic closube We use this algorithm to generate networks with exponential, power law, and
Poisson degree distributions with variable levels of clustering. Such networks may be used as models of social
networks and as a testable null hypothesis about network structure. Finally, we explore the effects of clustering
on the point of the phase transition where a giant component forms in a random network, and on the size of the
giant component. Some analysis of these effects is presented.
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[. INTRODUCTION many neighbors a node in a network has. The probability of

a node having degrek in a network is described by the

~ Many random network models have been proposed to reyegree distributiorp,, where p, can take the form of any
licate important aspects of the topology of real-world net-ye|| defined discrete density function over the positive inte-

works [1-14. In particular, much attention has been paid ©0gers Examples frequently employed in the literature are the
the degree distribution and the clustering coefficient. A grea ollowing.

deal of progress has been made on network models which pgisson distributionp,=Z€?/K!, k=0.

combine certain degree distributions with some level of clus-  power-law distribution. For our experiments, we use
tering [13,15-19. It has been an open problem to combinepower laws with finite cuttoffse: p=k e ™</Li (&%), k
these two topologies in the most general way. Is it possible ta. 1, where Lj(x) is thenth polylogarithm ofx. 7

have a network model which is flexible enough to accommo- Exponential distributionp, = (1-& "e™¥X, k=0.

?nattii:nyacg:nv?l'gat:gnocgedsel?éﬁeadrﬁgébelf?r? dadnedmcglritt?;cggi. Empirical distribution: The degree distribution is esti-
pap prop Ffﬁated from a network sample.

effectiveness by generating networks over a wide range o Gaussian distribution: The ordinary Gaussian must be

parameters. dnodified to be positive and discrete.

catzaggg;n sngrtr\:\éo*ogggeriz Za])gec fzgzno'nnﬁosn?geéilﬂgr%i _ The clustering coefficient QGiescribes the proportion of
gories. v u Ifhads in a network out of the total number of possible triads.

niques to reprgduce a spguﬂc Fopolqu2,2q. Other mod- The clustering coefficient is defined as
els have specific topologies built into theing., regular lat-

tice9 in order to explicate the so-called “small-world” _ 3N,y

problem[8,9]. Yet other models have focused on plausible C= Ny

mechanisms for how networks form, such as a growth pro- ] ) ) .

cess with preferential attachmefit0,11,15. In common WhereN, is the number of triads in the network aNg is the
with most mechanism-based models, we produce our neffumber of connected friples of nodes. Note that in every
works by growing them from one initial node. We find that triad there are three connected triples.

being able to construct a network one node at a time also There is also a measure lufcal clusteringgiven by

offers sufficient flexibility to combine arbitrary degree distri- N, (i)

butions and clustering. C= i)
Once we have a network model that can combine arbi- ( )

trary degree distributions and clustering, it is of interest to 2

explore the effects of these parameters on the size of tghereN, (k) is the number of triads connected to nadé(i)
giant component and the point of the phase transition where

. O .
a giant component forms. This is true with regard to clusteriS the degree of node and| 2 )is the number of potential
ing in particular, as so far models capable of interpolatingiads connected to a n?de of degi@®. The average value
between extremes of this parameter have been lacking. I8f local clustering(i.e., “Watts-Strogatz Clustering[8]) is

Sec. Il we explore the effects of clustering on the size of thealso of interest:

giant component and point of the phase transition. In Sec. IV Sc
we present some analysis. =
Throughout this article we will rely on the following defi- N

nitions. Thedegree distributiorof a network describes how whereN is the number of nodes in the network. This value is

frequently close to the clustering coefficient, and will be
equal to the clustering coefficient if local clustering is con-
*Electronic address: emv7@cornell.edu stant throughout the network.
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TABLE |. Detailed description of the clustering method.

(1) Initialize all nodes with a degree drawn independently from the degree distribution.
(2) Form a list of “stubs”—connections of nodes which have not yet been matched with neighbors. Call this list StubList.
(3) Pick a starting nodeg uniformly at random from all nodes.
(4) For each ofvy’s stubs, choose a new neighbor by picking an elemagritom the StubList with probabilit;pvl‘d(vo) as described in
the text. If the new neighbor is not the same nodeger already connected t@, then form the connection. Otherwise, repeat the
process until a valid neighbor is found. Add all of the new neighbors from this process to a list called NextWave.
(5) Copy all elements of NextWave to a list called CurrentWave. Remove all elements from NextWave. For all elements in CurrentWave
do the following.

(a) Form a list of all nodes two steps away. If a node does not have any stubs left in StubList, throw it out. Call this list
PotentialTriads.

(b) For all stubs which have not been assigned neighlfpr§can through PotentialTriads. With probabil®P", connect to node
vs € StubList. Remove element from PotentialTriads regardless of whether it was selected. If it was selected, also remove an instance
of vs from the StubList(ii) If no neighbors were selected from PotentialTriads, select a new neighbor by choosing from StubList as
above. If the new neighbor is not in CurrentWave, and if the new neighbor is not already in NextWave, add them to NextWave.
(6) Repeat the last step until NextWave is empty following an iteration. Then, if StubList is empty, the process is complete—all
connections have been formed. Otherwise, start a new component by choosing a new starting node uniformly at random from those not
yet in the network.

II. RANDOM NETWORK MODEL tite network of individuals and affiliations. Then they project
: L . . the bipartite network onto a unipartite network of only nodes
Introducing clustering into a network with a specified de- 5,4 no affiliations by connecting two nodes if they share a
gree distribution is a nontrivial problem. Any method aspir- common affiliation. The distribution of affiliation size and
ing to introduce an arbitrary amount of clustering into a netthe affiliation-degree distribution of the nodes are chosen in
work must interpolate between two extremely differentsych a way as to produce a desired level of clustering. Tun-
topologies. When clustering is 0%, the method must reproing the degree distribution simultaneously has proven more
duce pure random networks with specified degree distribuchallenging, however. While the bipartite projection method
tions. When clustering is 100%, there is only one configuramay actually have the potential to generate pure random net-
tion a network may have: each node must be connected to\gorks with tunable degree distributions and clustering, so far
small clique where every node has the same degree, and @ efficacy has been shown only for exponential and power-
of a node’s neighbors are connected with one another. Thigw random networks. It remains an open problem to imple-
challenge is made all the more difficult by trying to make thement it for arbitrary degree distributions.
model networks general enough to accommodate any desired Qur method works by growing networks. The algorithm
degree distribution. first initializes all nodes with a degree drawn independently
The most obvious way of introducing triads is to simply from the desired degree distribution. Then the random net-
define arewiring rule whereby links are swapped between work is constructed by an iterative procedure similar to a
nodes so as to introduce triads while leaving the degree dissranching process. The premise is to start from a single node
tribution the same. Such rewiring schemes quickly run intoand then assign new connections entirely at random under
problems, as it is impossible to define a rule such that theénhe constraint that a certain amount of clustering must exist.

number of triads is strictly increasing and the number ofThe algorithm is described in detail in Table I, and is sche-
triads introduced does not max out. The problem is that whematized in Fig. 1. Two example networks are shown in Fig.
links are “swapped” among nodes, triads are not only created,
but can be destroyed. For example, in our simulations we Our model has similarities to and differences from other
have found that such schemes are effective only for introducmodels proposed in the literature. Like the algorithm of Milo
ing about 15% clustering into a poisson random network. et al.[20], each node is assigned a unique degree prior to any
Rewiring algorithms have proven effective at the relatededges being formed between nodes. But like the model net-
challenge of adjusting theverage local clusteringkim [12]  works of Barabas{3] and Dorogovtseet al. [21] among
has recently used rewiring algorithms to introduce largeothers, the network is constructed via a growth process. The
amounts oflocal clusteringinto networks. Using Monte first node is chosen at random, and subsequently nodes are
Carlo (MC) simulations at zero temperatufee., a triad is  added to the graph by attaching them to nodes which still
never destroyed in the rewiring procgssmd a Hamiltonian have stubs that have not been matched. When the new node
of 2-C,, Kim was able to modify various networks with forms its own connections, it first forms a list of all nodes
diverse degree distributions to exhibit average local clusterwhich are two steps away. Then with probabill@y,,; that
ing (ZCy/N) ranging from 0% to 70%. node is selected as the next neighbor.
Newman[22] and Guillaumeet al. [19] have had some One complicated feature of this algorithm concerns the
success with another approach. These authors define a bipgrobability of selecting a new neighbor from the stub list. In
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fact, new neighbors cannot be selected uniformly at random
from the stub list, as clustering implies a certain amount of
degree assortativity among the nodes in the network. For
example, a node connected to a dedte®de hak-1 po-
tential triads in common with that node, and on average will
haveC(k—-1) common triads. This implies that the node must
have on average a degree at least equa(io-1).

Because triads are distributed uniformly throughout the
network, the number of triads connected to a node of degree
k is distributed binomia(('g) ,C). As noted above the number
of common triads with a neighbor of degrkes distributed
binomial (k-1,C). Let 7;; denote the number of triads node
has in common with nod¢, and 7;; denote the number of
triadsj has in common with. Of course these two random
variables should be equal. We can calculate the probability of
these two potential neighbors as having an equal humber of

FIG. 1. Overview of the network construction process. The firstcommon triads as:

node(far left) is chosen at random. Then neighbors for that node are

chosen as described in the text. Subsequently, neighbors are chosen min[d(i),d(j)]
for the new nodes, but now we have new connections formed with pﬁ = 2 p(q-ij = X)D(Tji =X).
nodes two steps away with probabili,,,. Triadic connections x=0

are indicated with dotted lines. This process continues until the
waves die out, and a new component is formed, or all nodes arket g; denote the probability of selecting nodefrom the

exhausted.

stub list. Then the correct probability for selecting nqdes
a neighbor is

@ o

(b)

FIG. 2. Two examples of networks generated with the algorithm. Left: Random network with power-law degree distrietibny
=2, C=0.15. Right: Random network with Poisson degree distributzer®, C=0.40[38]. Note that these are abstract representations of
random networks. The spatial embedding of the network does not have any meaning.
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FIG. 4. Random network on 1500 nodes, Poisson degree distri-

which is justg; weighted by the probability of the two neigh- Pution (z=4), =0.00. Compare with Figs. @ight) and 5.

bors having a compatible number of triads in common.

In order to sample from this distribution, we use Markov nent sizes for networks made with this algorithm is identical
chain Monte Carlo techniques. For a large number of iterato true random graphs with specified degree distribution
tions we select a new node from the stub list, then with without clustering.

probability a,; we accept this new neighbor, wheteis the It is worth noting that many real-world networks, particu-
currently selected node in the Markov process, and larly in the biological realm, have local clustering which
scales as I [23]. Our model in contrast produces constant
pe local clustering, though it may be possible to generalize our
;= 'C . method to create networks with any desired schedule of local
Pia clustering.
If B is not accepted, we keegp for the next iteration. The IIl. RESULTS

final neighbor is the node selected at the last iteration.

It is desirable that our algorithm selects networks as uni- We have explored the effects of clustering and degree
formly as possible from the ensemble of all networks whichdistribution over a wide range of parameters. Figures 2
realize a given degree distribution and clustering coefficient(right), 4 and 5 illustrate the effect of clustering on the struc-
It is difficult to prove that our algorithm is truly unbiased in ture of a random networks with Poisson degree distributions
this sense, though our networks do have many of the propgz=3) as clustering is increased from 0 to 1.00. Ssis
erties of an unbiased random network. The algorithm can bacreased, nodes tend to disaggregate into smaller tightly
tuned to produce exactly the right proportion of triads toconnected clusters of nodes with similar degree. This has the
triples in the limit of large graph size. Furthermore, the de-overall effect of decreasing the giant component size as clus-
gree of the nodes were chosen as independently random vatéring is increased. In the limit as C goes to 1, we find that
ables, so in the limit of large graph size, the degree distributhe network breaks down into many small completely con-
tion is unbiased too. Furthermore, the triads are uniformlynected cliques with each node in a cligue sharing a common
distributed throughout the network as reflected by the factlegree.
that the local clustering is independent of degree. Lastly, Figure 6 shows the effects of clustering on the size of the
when this algorithm is used to produce networks with nogiant component for a Poisson random network. Clustering
clustering at all, it produces networks with the same statistivaries from 0.05 to 0.90. The giant component seems to un-
cal properties as true random graphs with a specified degrekergo a phase transition at a critical level of clustering
distribution. As shown in Fig. 3, the distribution of compo- around C=0.60. In the next section we will find that the
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FIG. 5. Random network on 1500 nodes, Poisson degree distriy=2. Each point represents the average of 40 trials. Compare this

bution (z=4), C=0.97. with Fig. 6. The phase transition is much less sharp than for the
Poisson random networks.

critical clustering value is actuallg*=0.618. At this point,
nodes suddenly disaggregate into much smaller, tightly inter- The phase transition also undergoes major changes with
connected groups. Similar phase transitions have been ollie introduction of clustering, although this effect seems to
served throughout the network literature, particularly con-depend sensitively on the degree distribution. In Fig. 8 we
cerning the targeted deletion of links and nodes insee that the phase transition where a giant component forms
percolation phenomenr{@4]. This algorithm has similar dis- is not significantly affected by the introduction of clustering
connecting results without modifying the degree distributionfor networks with power-law degree distributions. In contrast
of the network. to the Poisson random networks, there is no sharp phase

Regarding power-law networksee Fig. 7, we note the transition between the regime with a giant component and
striking tendency for moderate levels of clustering to limit that without. This bears some resemblance to percolation
the size of the giant component. Because the number of pgghenomena, where the phase transition disappears for true
tential triads connected to a node scaleskisthe high- power laws and an exponent of 2. But in Fig. 9 we see that
degree vertices account for most of the clustering. In netthe point of the phase transition was dramatically shifted
works with highly skewed degree distributions, the high-forward for the Poisson random network. It is somewhat sur-
degree nodes must connect to one another in order to realizgising to observe the phase transition being shiftedard
the required number of triads. This has the effect of limitingas our algorithm features the introduction of degree assorta-
the ability to act as hubs for low-degree vertices, and conseivity into the network. Previous research has shown the ten-
quently the network disconnects into many small compo-

nents. Large components can be preserved under much 4000 I - -
higher clustering with distributions such as the Poisson.
s | OO C=0.15 A
A

é _A INZN AIA”A-;_ ] lﬁ’ 3000 — ‘._A"’A N
4000 — : — © L i
z : N A
= i 1 2 A
& 3000 - § 20001~ .
2 : 4
= - 3 . g
= ; £ i 7
g 2000 — : — g
o H Q A
E vl A - g loor ! o O
2 1000~ . o) JvCR o]
< - . 3
= A 4 -0

0.4 0.6 0.8 5 10 15

C K

FIG. 6. Size of the giant component versus the clustering coef- FIG. 8. Two random networks are compared over a range of
ficient in a Poisson random networ& 3. Each point represents the parameter values for the power-law degree distribution with param-
average of 40 trials. etersk and y=2. Each point represents the average of 40 trials.
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5000

s> 2-C2=2(1-0). P

There is not equality in Eq2) because there is an additional
force limiting the number of second neighbors: Once two
neighbors ofvg, sayv, andvy, share a triadic connection, it
becomes more likely that a node two steps away fegnsay

vy, IS @ common neighbor of bothy andwv;. In fact, such
connections exist with probabilit¢. Then, the number of
connections we should deduct from every neighbor at dis-
tance 2 due to common connections of nodes at distance 1 is
equal toC times the average number of triadic connections at
distance 1, or in other word2C?. Thus, we have

s,=22-CZ-C?Z=7(1-C-C?.

FIG. 9. The size of the giant component is shownzyghe . -, .
parameter of the Poisson degree distribution, for four levels of clusWe can usef this to. SOIVelfor Ithef Clrltlcal. where a giant
tering (C=0.0,C=0.15,C=0.30,C=0.40. The vertical lines indi- component forms given a level of clusteriy
cate the point of the phase transition for each level of clustering 7= 22(1 -C- C2). (3)
predicted by Eq(4).

5000)
T

4000 —

3000 —

2000 —

1000

Giant Component Size(N

The nonzero root of this equation is given by
dency of degree assortativityto shift the point of the phase 1

*

transition backward?25]. =, 4
(! 5.' ZC 1 _ C _ CZ ( )

Note that wherC=0 we retrieve the well known result that a

IV. PHASE TRANSITIONS giant component forms when=1 in the absence of cluster-

ng. Unfortunately, we can only say that this is a lower bound
'for the phase transition because the nodes at distance 2 are
not identical tavy. The number of outgoing connections from
such nodegqto nodes not already counteds less thanz

It is a necessary condition for a giant component to exis
that if we pick a node at random, the average number o
neighbors two steps awas,, exceeds the number of neigh-
bors one step awag,; [26]. This is intuitive, since if it were —C27 on average
not the case, the number of neighborsteps away would ge.

dectease o zeto on average, and the comporent would pg" 19, © e have pltied he iz o the gt compepent
finite in the limit of large network size. We can use this to b 9.

approximate the point of the phase transition as clustering iéertfawgiisngorgis dp:n?e?nﬁgﬁtpttleativeegr?rtlrslglcﬁpaasngl\;,?;uIa-
varied in our random networks. Formally, we will solve for y (4). 9 9 y

) tion
the point where There is a singularity if4) where 1-C—C?=0. At this

S =S,. (1) point, C*=0.618, the giant component disappears regardless

. . ) . of the average degreeof the degree distributiorC* repre-
The necessary conditiofl) will not quite be a sufficient genis the critical level of clustering that can coexist in a
condition in the presence of clustering as described below,atwork with a giant component.

Thus, our solution will only be a lower bound on the point of
the phase transition, but in practice, this will serve as an
excellent approximation.

For the Poisson degree distribution, the average number
of nodes one step away is equal to the parameter of the During the execution of the algorithm, it occasionally
distribution z, so we haves;=z. As is well known[1], the  happens that a node cannot find a suitable neighbor due to
number of edges emanating from a node if we pick an edgthe absence of a node left in the network which has free stubs
at random and follow it to one of its ends is alador the  and the correct degree to satisfy the degree assortativity re-
Poisson degree distribution. Thus, in the absence of clustequirements. This imperfection is due to the finite size of the
ing we would have simplg,=s,z=7?, wheres, is the aver- network. In the limit of large size, it would always be pos-
age number of nodes two steps away from a randomly chacsible to find a scale such that every node can find just the
sen node. right profile of neighbors with the right degree. There is no

In the presence of clustering, things become more comperfect way to deal with such discprepancies. For the simu-
plicated. Let us pick a node uniformly at random in the net-lations used in this article, we have simply truncated the
work and call this nodeg. A neighbor of this nodey, will degree of that node so that it does not have to seek a new
have on average connections not in common withy. Fur-  neighbor. Even with networks of only 5000 nodes, the num-
thermore, there will be on averadez triadic connections ber of corrections made is quite small.
betweerv, andv, as each of those connections has a prob- Figures 10 and 11 show the effects of network size and
ability C of being a triad. We can simply deduct the triadic clustering on the amount of degree corrections made by the
connections frons,, so that we have algorithm. Figure 10 shows the effects of clustering on the

V. FINITE SIZE EFFECTS
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FIG. 11. The percentage reduction in the number of “stubs” is
FIG. 10. The percentage reduction in the number of “stubs” iSshown versus the network size. The network has a Poisson degree
shown versus the clustering coefficient for two networksPois-  gistribution with parameter=4;=0.80. Each point is based on the
son degree distribution with parameter=#) exponential degree ayerage of 20 trial networks.
distribution with parameter=2N=5000 for both networks. Each
point is based on the average of 20 trials.
shaping the network than are being accounted for in the ran-

number of corrections made for two networks. Note that thelom graph model. These deviations can then motivate fur-
total number of “stubs” in the network is equal to the averagdher inquiry into the forces shaping real-world netwofks
degree of the nodes times the population size. The correc- S€cond, real-world networks are very often of a scale that
tions made is shown as the proportional reduction in thdt iS impossible to map them entirely. Various network sam-
number of “stubs.” Even at 90% clustering, the Poisson ranPling techniques have been devised to estimate features of
dom network only undergoes less than 5% reduction in it§h€ network topology in the absence of data on the entire
“stubs.” network[27-29. Given reliable estimates about network to-
Figure 11 shows the effects of network size on the numbeP0logy, a random network can then be generated which re-
of corrections made. As expected, the number of correctionroduces this topology. The random network may be used as

drops with the number of nodes in the network. For 70002 Stand-in for modeling various dynamic models on net-

nodes and 80% clustering, a Poisson random network undeforks. _
goes less than a 0.5% reduction in its “stubs.” Last, the family of random networks we have presented

here enables the exploration of a huge parameter space for
models on networks. There are a growing number of models
which describe dynamic processes on networks. Examples
We have presented a method for generating random ne&re models of diffusion processes, such as models of epidem-
works which unite two frequently modeled topological ics [30-32, models of fadg33,34, the spread of rumors
features—clustering and the degree distribution. [35,36, and the migration of species among connected habi-
Random network models can serve several important puttats [37]. Other models explore interactions among nodes
poses. First, they can serve as a null hypothesis about trmbedded in a network. Examples include spin glasses,
structure of a real-world network. Significant deviations in Kuramoto oscillators, and disordered neural netwd.
the structure of the real-world network from a correspondingThere are many applications for exploring the effects of clus-
random graph indicate that there are more forces at workering and degree distributions on these and other models.

VI. DISCUSSION
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